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AERODYNAMIC CHARACTERISTICS AT MACH 1.60, 2.00, AND 2.50
OF A CRUCIFORM MISSILE CONFIGURATION WITH
IN-LINE TAIL CONTROLS®

By William A, Corlett and Dennis E. Fuller
Langley Research Center

SUMMARY

An investigation has been conducted at Mach numbers of 1.60, 2.00, and
2.50 to determine the aerodynamic characteristics of a cruciform missile con-
figuration with low-aspect-ratio wings and in-line tail controls close-coupled
with the wings. Hinge-moment characteristics were also obtained for various
control deflections.

The results indicate that the model was longitudinally and directionally
stable about the selected center-of-gravity location at all test Mach numbers,
although there was a slignificant reduction in stability levels with increase in
Mach number. The vertical tail surfaces produced effective yaw and roll con-
trol at all test Mach numbers and angles of attack, although some nonlinear
characteristics occurred at high angles of attack because of differences in

effectiveness of the top and bottom tail surfaceg. - \
é J

INTRODUCTION

One of the primary aerodynamic requirements of an alr-to-surface missile
is that it possess an adequate stability level over its operational range with
regard to angles of attack and sideslip as well as Mach numbers. From the con-
trol consideration, it is also desirable that the missile be able to operate at
a small stability margin with no inherent control reversal introduced by aero-
dynamic nonlinearities. Numerous missile configurations with various control
devices have been investigated by the National Aeronautics and Space
Administration and the experimental results for some of these configurations
are presented in references 1 to 1l.

As a continuation of the study of various missile concepts, the present
investigation is concerned with the determination of the aerodynamic character-
istics of a missile with cruciform, low-aspect-ratio wings and in-line tail
surfaces close~coupled with the wings.




The model with various control deflections has been investigated in the
Langley Unitary Plan wind tunnel, and the results obtained at Mach numbers
of 1.60, 2,00, and 2.50 are presented herein. Measurements of tail-surface -
hinge moments are also included. The tests were made at a constant Reynolds
number per foot of 2.0 X 106, at angles of attack from about -4° to 22°, and
at angles of sideslip from about -5° to 99,

SYMBOLS

The aerodynamic-coefficient data are referred to the body-axis system.
The moment reference was located at a station 44.8 percent of the body length
from the nose.

A reference area, 0.07792 sq ft
Ca axial-force coefficient, AEEEEKEQEEE
4
Ch hinge-moment coefficient, Hinge moment
qAd
Ch,l hinge-moment coefficient of right horizontal tail
Cp,2 hinge-moment coefficient of bottom vertical tail
J
Ch,3 hinge-moment coefficient of left horizontal tail
Ch, 4 hinge-moment coefﬁ%g}en&gﬁ%top vertical tail
Cy rolling-moment coefficient, Rolling moment
gAd
, X,
CZB effective dihedral parameter, S——’ per degree
B
itchi
Cm pitching-moment coefficient, P phlng moment
gAd
. X oCp
Cma longitudinal stability parameter, Se near o = 0%, per degree
o
Cn normal-force coefficient, NormalAforce
a.
Cn Yawing-moment coefficient, Yewing moment

qAd

T et ey
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Side force

Cy side-force coefficient, "

d reference body diameter, 3.780 in.

M free-stream Mach number

q free~stream dynamic pressure

a angle of attack, deg

B angle of sideslip, deg

51 control deflection of right horizontal tail (viewed from downstream),

negative leading edge down, deg

Bo control deflection of bottom vertical tall, negative leading edge to
left (viewed from downstream), deg

53 control deflection of left horizontal tail (viewed from downstream),
negative leading edge down, deg

Bl control deflection of top vertical tall, negative leading edge to
left (viewed from downstream), deg

MODEL

- Dimensional details of the model are shown in figure 1, and the model
mounted in the test section is shown in figure 2.

The body, which was composed of a von Kirmén forebody, a cylindrical mid-
section, and a boattailed afterbody, had a fineness ratio of 9.57. The cruci-
form trapezoidal wings had rounded leading edges, beveled tralling edges, and
a maximum thickness-chord ratio of 0.04. A strake extended from each wing
leading edge to a station on the forebody corresponding to 19.9 percent of the
body length. Each wing panel, excluding the strake, had an exposed area of
26.66 sq in. The wings were located so that the center of area was at a point
corresponding to 62.9 percent of the body length.

The cruciform tail surfaces, which were in-line and close-coupled with the
wings, are identified as 1, 2, 3, and 4. The numbering begins with the hori-
zontal surface on the right (viewed from downstream) and goes clockwise. Thus,
the bottom and top vertical tail surfaces will be ldentified with the numbers 2
and L4, respectively, and the right and left horizontal tail surfaces will be
identified with the numbers 1 and 3, respectively. The horizontal tails had a
maximum thickness-chord ratio of 0.10 and the vertical tails had a maximum
thickness-chord ratio of 0.05. Pitch control was provided by movement of the
two horizontal tail surfaces, and lateral and directional control was provided
by movement of the two vertical tail surfaces. The exposed area of each tail
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surface was 8.35 sq in. The center of area of the all-movable tails was located
at a point corresponding to 88.9 percent of the body length. Each tail was
provided with a strain-gage balance to measure hinge moments about a hinge line
Jocated 11.72 percent root chord forward of the center of area.

The model was also provided with two simulated support brackets located so
as to allow the missile to be carried, prior to launch, in a 45° rolled posi-
tion. (See fig. 1.)

TESTS, CORRECTIONS, AND ACCURACY

The tests were conducted in the low Mach number test section of the
Langley Unitary Plan wind tunnel, which is a continuous-flow, variable-pressure
facility. The test section is about 4 by 4 feet in cross section and about
T feet in length. The nozzle leading to the test sectlon is of the asymmetric
sliding-block type which permits continuous variation in Mach number from 1.47
to 2.86. The model was mounted in the tunnel on a remote-controlled sting, and
forces and moments were measured by means of a six-component, electrical strain-
gage balance mounted internally.

For all tests, the Reynolds number per foot was 2.0 X 106. The dewpoint,
measured at stagnation pressure, was maintained below -30° F to prevent conden-
sation effects. The stagnation temperature was 150° F whereas the stagnation
pressure varied as follows for the three test Mach numbers:

Mach number Stagnatlon.pressure,
psia
1.60 7,92
2.00 9.20
2.50 11.73

Tests were made through an angle-of-attack range from approximately -40
to 22° and through an angle-of-sideslip range from approximately -5° to 9° at
angles of attack of about 0°, 11°, and 22°. The angles of attack and sideslip
have been corrected for tunnel airflow misalinement and for deflection of the
balance and sting due to aerodynamic loads. The balance-chamber pressure was
measured by means of a single static-pressure orifice located in the vicinity
of the balance and the results have been adjusted to correspond to free-stream
static pressure acting over the model base. -

In order to assure boundary-layer transition to turbulent conditions,
1/16-inch-wide strips of No. 60 carborundum grit were placed streamwise 1/2 inch
aft of the nose and 1/2 inch aft of the leading edges of the wings and tails.

Based on balance calibration and data repeatability, the data presented
herein are estimated to be accurate within the following limits:
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DISCUSSION OF RESULTS

Longitudinal Aerodynamic Characteristics

The longitudinal aerodynamic characteristics of the model with various
pitch-control deflections and with the horizontal talls removed are presented
in figure 3. The results indicate that the model is stable about the selected
center-of-gravity location and has positive pitch-control effectiveness at all
test angles of attack for each Mach number in the investigation. Pitch-control
effectiveness appears to be linear with tail-deflection angle near 0° angle of
attack for each test Mach number. However, at Mach nmumbers 2.00 and 2.50, a
noticeable decrease in tall effectiveness occurs with increase in angle of
attack. There is a decrease in the value of Cp, of about 0.13, and a reduc-

tion in pitch-control effectiveness of about 40 percent between Mach numbers of
1.60 and 2.50.

Lateral Aerodynamic Characteristics

The effect of vertical-control-surface deflections on the aerodynamic char-
acteristics in sideslip of the model with pitch-control settings of 0° and -20°
is presented in figures 4 and 5, respectively. A comparison of the data in
figures L4 and 5 indicates that with the exception of variations in rolling
moment at the higher Mach numbers there are only slight effects on the side-
slip characteristics as a result of deflecting the pitch-control surfaces
to -20°.

With all control surfaces set at 0° (fig. 4), the model is directionally
stable at each test Mach number, although there is a decrease in directional
stabllity with increase in Mach number from l 60 to 2.50. Values of CzB show

no appreciable effect of Mach number at an angle of attack of 0° but do indi-
cate a large effect of angle of attack wherein, with increasing angle of attack,
values of Cj3n 1initially become more negative and then reverse to positive.

(see figs. 4(c), 4(d), and 4(e), for example.) There are no significant effects
of sideslip angle on rolli- and yaw-control effectiveness at any of the test
Mach numbers or angles of .attack.



Some effects of angle of attack on the configuration with various control
settings are more clearly shown in figures 6 and 7 where the data for B = O°
for the lateral coefficients are plotted as a function of angle of attack for
each Mach number. For &; = b3 = 0° or -20° an angle of sideslip of O°

(figs. 6 and T), the vertical control surfaces deflected symmetrically
(62 = =100, @) = -100) produce effective Cp at all test Mach numbers although

there 1s a decrease in effectiveness of about 50 percent at o = 0° between
M=1.60 and M = 2,50. This yawing-moment effectiveness is produced with only
small effects on rolling moment except at high angles of attack for M = 2,00
and M = 2.50 where a positive increment in roll occurs. There is also little
change in yaw effectiveness for the symmetrical deflection of &, and 9) with

increase in angle of attack (figs. 6 and 7).

The yawing moment obtained with a -20° deflection of the top vertical tail
only (64) is approximately the same at o = 0° as that obtained with a -10°

deflection of the top and bottom tails together (52 and 54). With increasing

angle of attack, however, the effectiveness of the top tall decreases rapidly
at the higher Mach numbers as a result of the adverse effects of the wing-body
wake, and the yawing moment produced by deflection of the top tail alone becomes
considerably less than that produced by combined deflection of the top and bot-
tom talls. (See figs. 6 and 7.)

Differentlal vertical-control-surface deflections lead to positive roll-
control effectiveness (—CZB at all test Mach numbers and angles of attack. At

each Mach number and particularly at high angles of attack, differential set-
tings of +10° and -10° on the vertical surfaces provide greater rolling-moment
values than do settings of 0° and -20°, partly because of the decrease in effec-
tiveness of the top vertical surface and partly because of an increase in effec-
tiveness of the bottom vertical surface. As would be expected at o = 00, dif-
ferential deflections of 0° and -20° result in a positive increment in yawing
moment whereas the equal but opposite deflections of 10° result in essentially
no yawing moment. (See figs. 6 and 7.) With increasing angle of attack at
M=2,00 and M = 2.50, however, the 0° and -20° deflections provide a less
positive increment in Cp and the +10° and -10° deflections begin to provide
an increasingly negative Cp for 8; = 83 = 0° (fig. 6) as a result of the

difference in effectiveness between the top and bottom tails. However, for
81 = 83 = -20° (fig. 7), the +10° and -10° deflections begin to provide an

increasingly positive Cp with increasing angle of attack for M = 2.00 and
M = 2-50.

Hinge-Moment Characteristics

Hinge-moment coefficients for the control surfaces at various deflection
angles are presented in figures 8 and 9. The results, in general, indicate
negative variations of Cp with increasing angle of attack and with positive

control deflection and a decrease in Cp with increasing Mach number.



CONCLUSIONS

An investigation was conducted at Mach numbers of 1.60, 2.00, and 2.50 to
determine the aerodynamic characteristics of a cruciform missile configuration
with low-aspect-ratio wings and close-coupled in-line tail controls at various
deflection angles. Hinge-moment characteristics were also obtained for various
control deflections. Results of the investigation lead to the following
conclusions:

1. The model was longitudinally and directionally stable about the selected
center-of-gravity location at all test Mach numbers, although there was a sig-
nificant reduction in stability with increase in Mach number.

2. The vertical tail surfaces produced effective yaw and roll control at
all test Mach numbers and angles of attack although some nonlinear characteris-
tics occurred at high angles of attack because of differences in effectiveness
of the top and bottom tail surfaces. '

3. Deflection of the pitch-control surfaces generally led to only small
effects on the roll- and yaw-control characteristics of the model.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 23, 1965.
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Figure 3.- Effect of deflections of pitch controls on longitudinal aerodynamic characteristics. 02 = 84 = 00.
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Figure 3.- Continued.
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Figure 3.- Concluded.
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Figure 9.- Concluded.
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